MEM6810 Engineering Systems Modeling and Simulation 工程系统建模与仿真

Theory

Lecture 4: Random Variate Generation

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

shenhaihui.github.io/teaching/mem6810f 🗹 shenhaihui@sjtu.edu.cn

Spring 2022 (full-time)

2 Random Number Generation

- Definition
- Pseudo-Random Numbers
- Linear Congruential Generator
- ► More Sophisticated RNGs
- ► Tests for Random Numbers

3 Random Variate Generation

- ► Inverse-Transform Technique
- Acceptance-Rejection Technique
- Other Ad-Hoc Methods
- Generating Poisson Process

2 Random Number Generation

- ► Definition
- Pseudo-Random Numbers
- ► Linear Congruential Generator
- ► More Sophisticated RNGs
- ▶ Tests for Random Numbers

3 Random Variate Generation

- ► Inverse-Transform Technique
- Acceptance-Rejection Technique
- ▶ Other Ad-Hoc Methods
- Generating Poisson Process

- Random variable is a variable whose values are random and depend on a probability distribution.
 - E.g., normal, exponential, Poisson, etc.
- Random variate is a *particular* outcome (i.e. observed sample, realization) of a random variable.
 - E.g., 5 random variates (outcomes) from a $\mathcal{N}(0, 1)$ random variable: 0.5377, 1.8339, -2.2588, 0.8622, 0.3188.
- When simulating a system, we often need to generate random variates (e.g., interarrival time, service time) from all kinds of distributions (e.g., exponential distribution, arbitrary empirical distribution).

- In practice:
 - Most simulation softwares have build-in functions to generate random variates from common distributions.
 - Most programming languages have implemented the common routines of random variate generation in the libraries.
- It is nevertheless worthwhile to understand how random variate generation occurs.
 - In case when build-in functions or libraries are unavailable.
 - To better understand the randomness in stochastic simulation.
 - Be alert to some inadequate random variate generator.
- To produce a sequence of random variates from a given distribution (of a random variable):
 - Start with random variates from Unif(0, 1) (called random numbers).
 - All random variates with given distribution are "transformed" from random numbers.

2 Random Number Generation

- Definition
- Pseudo-Random Numbers
- Linear Congruential Generator
- More Sophisticated RNGs
- Tests for Random Numbers

8 Random Variate Generation

- Inverse-Transform Technique
- Acceptance-Rejection Technique
- ▶ Other Ad-Hoc Methods
- Generating Poisson Process

- **Random numbers** are a sequence of **independent** random observations from **uniform** distribution on [0, 1].
 - If $U \sim \text{Unif}(0, 1)$, then $\mathbb{E}[U] = \frac{1}{2}$, $\text{Var}(U) = \frac{1}{12}$, and its pdf is $f(u) = \begin{cases} 1, & 0 \le u \le 1, \\ 0, & \text{otherwise.} \end{cases}$
 - 10 random numbers generated in MATLAB: 0.8147, 0.9058, 0.1270, 0.9134, 0.6324, 0.0975, 0.2785, 0.5469, 0.9575, 0.9649.
- Statistical Properties
 - Uniformity: Each value on [0, 1] has equal likelihood.
 - Independence: Implies no correlation between successive numbers.

Definition

Uniformity

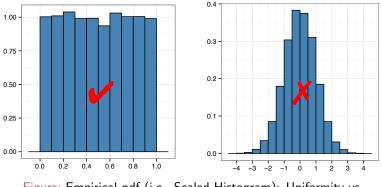


Figure: Empirical pdf (i.e., Scaled Histogram): Uniformity vs Nonuniformity (from ZHANG Xiaowei)

Independence

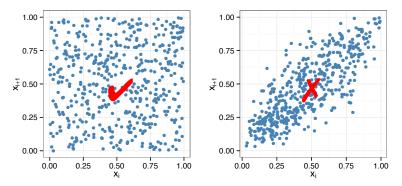


Figure: Scatter Plot: Uncorrelated vs Correlated (from ZHANG Xiaowei)

Definition

- A computer can NOT generate true randomness! It can only give us **pseudo-random** (伪随机) numbers.
- "Pseudo" means false
 - Generating random numbers by a known method removes true randomness.
 - The set of pseudo-random numbers can be repeated.
- Goal: To produce a sequence of numbers in [0, 1] that imitates the ideal properties of random numbers.
 - Statistical properties are the most important.
 - True randomness is not the first priority.

- Properties of a good random number generator (RNG):
 - Pass statistical tests.
 - 2 Solid theoretical support.
 - 8 Fast.
 - ④ Sufficiently long cycle (period).
 - 6 Portable to different computers.
 - 6 Replicable.
- Techniques for RNG:
 - Linear Congruential Generator (LCG)
 - Combined LCG
 - Multiple Recursive Generator (MRG)

- Linear Congruential Generator (LCG, 线性同余发生器) is a simple and early development of RNG.
- **1** Produce a sequence of integers x_1, x_2, \ldots between 0 and m-1 by

$$x_{i+1} = (ax_i + c) \mod m, \quad i = 0, 1, 2, \dots$$

- The initial value x_0 is called the *seed* (种子), *a* is *multiplier* (乘子), c is increment (增量), and m is modulus (模数).
- **2** Transform x_i 's to values between 0 and 1 by

$$u_i = \frac{x_i}{m}$$
, $i = 0, 1, 2, \dots$

• Possible values of u_i : $\{0, \frac{1}{m}, \dots, \frac{m-1}{m}\}$. (May not cover all!)

• The selection of the values for a, c, m, and x₀ drastically affects the statistical properties and the cycle length M) if $f \in \mathcal{F}_{+}^{*}$

• Example: Use LCG with $x_0 = 27$, a = 17, c = 43, and m = 100.

$$\begin{aligned} x_0 &= 27 \\ x_1 &= (17 \times 27 + 43) \mod 100 = 502 \mod 100 = 2 \\ u_1 &= 2/100 = 0.02 \\ x_2 &= (17 \times 2 + 43) \mod 100 = 77 \mod 100 = 77 \\ u_2 &= 77/100 = 0.77 \\ x_3 &= (17 \times 77 + 43) \mod 100 = 1352 \mod 100 = 52 \\ u_3 &= 52/100 = 0.52 \\ x_4 &= (17 \times 52 + 43) \mod 100 = 927 \mod 100 = 27 \\ u_4 &= 27/100 = 0.27 \end{aligned}$$

The cycle length is only 4!

• Try https://xiaoweiz.shinyapps.io/randNumGen for different parameters.

- An actual use of LCG (Lewis et al. 1969): $a = 7^5$, c = 0, $m = 2^{31} 1 = 2,147,483,647$ (a prime number).
 - It adopts $u_i = \frac{x_i}{m+1}$.
 - It passes many of the standard statistical tests.
 - Cycle length $\approx 2^{31} 2 \approx 2 \times 10^9$ (well over 2 billion).
- Note: By letting modulus *m* be a power of 2 (or close), the modulo operation can be conducted efficiently, since most digital computers use a binary representation of numbers.
- As computing power has increased, LCG is not adequate nowadays; more sophisticated RNGs are used in practice.

Combined LCG: Combine J (≥ 2) LCG (with c = 0).

- For 32-bit computers, L'Ecuyer (1988) suggests combining J = 2 generators with $a_1 = 40,014$, $m_1 = 2,147,483,563$, $a_2 = 40,692$, and $m_2 = 2,147,483,399$.
 - **1** Select seed $x_{1,0}$ in the range $[1, m_1 1]$ for the first generator, and seed $x_{2,0}$ in the range $[1, m_2 1]$ for the second. Set j = 0.
 - 2 Calculate

$$x_{1,j+1} = a_1 x_{1,j} \mod m_1$$
,

$$x_{2,j+1} = a_2 x_{2,j} \mod m_2.$$

8 Let $x_{j+1} = (x_{1,j+1} - x_{2,j+1}) \mod (m_1 - 1)$. (*Remark*: mod uses floored division, i.e., $y \mod m = y - m \lfloor \frac{y}{m} \rfloor$.)

4 Return

$$u_{j+1} = \begin{cases} \frac{x_{j+1}}{m_1}, & \text{if } x_{j+1} > 0, \\ \frac{m_1 - 1}{m_1}, & \text{if } x_{j+1} = 0. \end{cases}$$

5 Set j = j + 1 and go to Step 2.

It has cycle length $(m_1-1)(m_2-1)/2 \approx 2 \times 10^{18}$. If $M_1 = 10^{18}$

• Multiple Recursive Generator (MRG): Extends LCG by using a higher-order recursion:

$$x_i = (a_1 x_{i-1} + a_2 x_{i-2} + \dots + a_k x_{i-K}) \mod m.$$

- A specific instance that has been widely implemented is MRG32k3a[†] (L'Ecuyer 1999), which is a *combined MRG* with J = 2 and K = 3.
 - It has cycle length $pprox 3 imes 10^{57}$, which is enormous.
 - If you could generate one billion (10⁹) pseudo-random numbers per second, then it would take longer than the age of the universe to exhaust the period of MRG32k3a!

[†]MRG32k3a or its adaptation is one of the RNGs used in MATLAB, R, SAS, Arena, etc.

- Tests based on generated sequences of numbers.
 - Frequency Test for uniformity (discussed in next lecture)
 - Kolmogorov-Smirnov test (柯尔莫哥洛夫-斯米尔诺夫检验)
 - chi-square test (χ^2 test, 卡方检验)
 - Autocorrelation Test for independence.
- There are also some *theoretical tests* without actually generating any numbers, e.g., spectral test (谱检验).
- Fortunately, the well-known RNGs which are widely used in simulation softwares and languages have been extensively tested and validated.
- Be careful when the RNG at hand is not explicitly known or documented!
 - Even RNGs that have been used for years in popular commercial softwares (e.g., Excel, Visual Basic), have been found to be inadequate (L'Ecuyer 2001).

2 Random Number Generation

- ► Definition
- Pseudo-Random Numbers
- ► Linear Congruential Generator
- ► More Sophisticated RNGs
- ▶ Tests for Random Numbers

3 Random Variate Generation

- Inverse-Transform Technique
- Acceptance-Rejection Technique
- Other Ad-Hoc Methods
- Generating Poisson Process

.7 / 38

- Assumption: RNG is available, i.e. we have a sequence of random numbers (i.e., Unif(0, 1) random variates).
- Goal: Produce random variates from a given probability distribution (e.g. exponential, Poisson, etc.).
- Widely-used techniques[†]
 - Inverse-transform technique (generic)
 - Acceptance-rejection technique (generic)
 - Other ad-hoc methods for some specific distributions

^T Methods introduced in this lecture are exact; there are also approximation methods such as MCMC.^{1141 Jun Town UNIT}

• Let F(x) be the CDF of X, i.e., $F(x) = \mathbb{P}(X \le x)$.

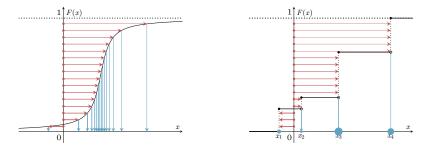


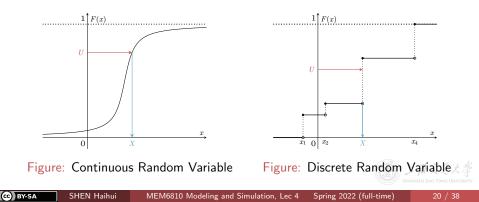
Figure: Continuous Random Variable

Figure: Discrete Random Variable

- Procedures
 - **1** Generate (as needed) random numbers (on vertical axis).
 - 2 Map inversely to points on horizontal axis, which are the desired random variates from F(x).

- The formal definition of inverse function is $F^{-1}(y) \coloneqq \min\{x: F(x) \geq y\}, \quad 0 < y < 1.$
- If $U \sim \text{Unif}(0, 1)$, then $F^{-1}(U)$ has the same distribution as X, i.e.,

$$\mathbb{P}(F^{-1}(U) \le x) = \mathbb{P}(U \le F(x)) = F(x).$$



- The inverse-transform technique is useful when the CDF is so simple that its inverse function can be *analytically solved* or *easily computed*.
- It can be used to sample from various continuous distributions
 - uniform
 - exponential
 - triangular
 - Weibull
 - Cauchy
 - Pareto
- It can be used to sample from all (in principle) discrete distributions, e.g.,
 - discrete uniform
 - geometric
 - arbitrary empirical distribution

- Goal: Generate random variates from $X \sim \text{Unif}(a, b)$.
- Intuition: Since X = a + (b a)U, we just need to:
 - **1** Generate random number u_i ;
 - **2** Output $x_i = a + (b a)u_i$ as the required random variates.
- For $X \sim \text{Unif}(a, b)$, the pdf and CDF are

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & \text{otherwise,} \end{cases} \quad F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \le x \le b, \\ 1, & b < x. \end{cases}$$

- Solve the inverse function of F(x), $F^{-1}(y) = a + (b-a)y, \quad 0 < y < 1.$

• So, $F^{-1}(U) = a + (b - a)U$ has the same distribution as X.

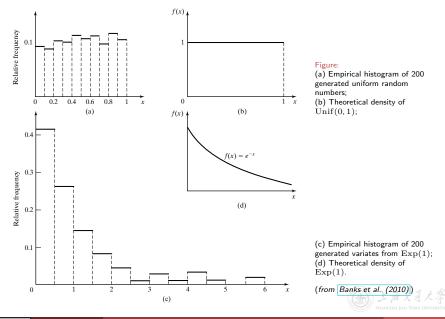
- Goal: Generate random variates from $X \sim \text{Exp}(\lambda)$. •
- For $X \sim \text{Exp}(\lambda)$, the pdf and CDF are

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases} \quad F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Solve the inverse function of F(x),

$$F^{-1}(y) = -\frac{1}{\lambda}\ln(1-y), \quad 0 < y < 1.$$

- So, $F^{-1}(U) = -\frac{1}{\lambda} \ln(1-U)$ has the same distribution as X.
- Remark: $1 U \sim \text{Unif}(0, 1) \Longrightarrow -\frac{1}{\lambda} \ln(U)$ is sufficient.
- Numerical test for Exp(1) in Excel.
 - Generate 200 random numbers.
 - Obtain 200 random variates via the inverse function



- Consider a discrete random variable X taking values 0, 1, 2 with probability 0.5, 0.3 and 0.2.
- The pmf and CDF are

$$p(x) = \begin{cases} 0.5, & x = 0, \\ 0.3, & x = 1, \\ 0.2, & x = 2, \end{cases} \quad F(x) = \begin{cases} 0, & x < 0, \\ 0.5, & 0 \le x < 1, \\ 0.8, & 1 \le x < 2, \\ 1, & 2 \le x. \end{cases}$$

• Solve the inverse function. (Recall $F^{-1}(y) \coloneqq \min\{x : F(x) \ge y\}$.)



Discrete Distribution

- Why do we need another method when the inverse-transform technique is already generic?
 - The CDF of a desired distribution may not have an analytical form.
 - The inverse CDF may not exist in closed form and may be challenging to evaluate, e.g., beta, gamma, normal, etc.
 - Although you can solve the inverse transform via numerical methods anyway, the efficiency may be low.
- Acceptance-rejection technique is also useful for generating a *non-stationary Poisson process* (more details later).

- Goal: Generate random variates from $X \sim \text{Unif}(1/4, 1)$ using acceptance-rejection technique.
 - **1** Generate a random number u (from $U \sim \text{Unif}(0, 1)$).
 - If u ≥ 1/4, accept u, output u as the desired random variate; if u < 1/4, reject u, and return to Step 1.</p>
 - If another Unif(1/4, 1) random variate is needed, repeat the procedure from Step 1; stop otherwise.
- Important Observation 1: To produce one random variate using A-R technique, one may need to generate multiple random numbers.
 - Whereas there exists a one-to-one mapping for the inverse-transform method.

- Important Observation 2: The accepted values of U are conditioned values.
 - U itself does not have the desired distribution.
 - U conditioned on the event $\{U \ge 1/4\}$ does!

• For
$$1/4 \le x \le 1$$
,
 $\mathbb{P}\{U \le x | U \ge 1/4\} = \frac{\mathbb{P}\{U \le x \text{ and } U \ge 1/4\}}{\mathbb{P}\{U \ge 1/4\}} = \frac{x - 1/4}{3/4}$,

which is exactly the desired CDF of $X \sim \text{Unif}(1/4, 1)$.

• Suppose we want to generate random variates from X, whose density f(x) has support [a, b] and is upper bounded by M.

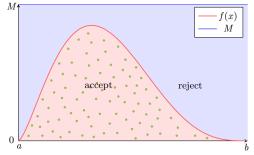


Figure: Bounded Support (original image from ZHANG Xiaowei)

1 Generate random variate pairs $(y_1, z_1), (y_2, z_2), \ldots$, from uniform $\{(y, z) : a < y < b, 0 < z < M\}$.

• y_i from $Y \sim \text{Unif}(a, b)$, z_i from $Z \sim \text{Unif}(0, M)$

2 Accept the pair if $z_i < f(y_i)$ and output y_i as random variate from X with density f(x).

Bounded Support

- Y conditioned on the event $\{Z < f(Y)\}$ has the same distribution as X, i.e., having density f(x).
 - $(Y, Z) \sim \operatorname{uniform}\{(y, z) : a \le y \le b, \ 0 \le z \le M\}.$

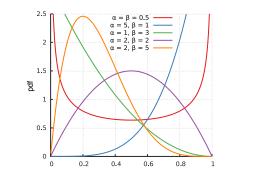
Proof.

$$\begin{split} \mathbb{P}\{Y \leq x | Z < f(Y)\} &= \frac{\mathbb{P}\{Y \leq x, Z < f(Y)\}}{\mathbb{P}\{Z < f(Y)\}} \\ &= \frac{\int_a^x \int_0^{f(y)} f_{Y,Z}(y,z) \mathrm{d}z \mathrm{d}y}{\int_a^b \int_0^{f(y)} f_{Y,Z}(y,z) \mathrm{d}z \mathrm{d}y} \quad \text{Note: } f_{Y,Z}(y,z) = \frac{1}{(b-a)M} \\ &= \frac{\int_a^x \int_0^{f(y)} \frac{1}{(b-a)M} \mathrm{d}z \mathrm{d}y}{\int_a^b \int_0^{f(y)} \frac{1}{(b-a)M} \mathrm{d}z \mathrm{d}y} = \frac{\int_a^x \int_0^{f(y)} \mathrm{d}z \mathrm{d}y}{\int_a^b \int_0^{f(y)} \mathrm{d}z \mathrm{d}y} \\ &= \frac{\int_a^x f(y) \mathrm{d}y}{\int_a^b f(y) \mathrm{d}y} = \frac{\mathbb{P}\{X \leq x\}}{1} = \mathbb{P}\{X \leq x\}. \end{split}$$

• The acceptance rate is $\mathbb{P}\{Z < f(Y)\} = \frac{1}{(b-a)M}$.

Bounded Support

• Goal: Generate random variates from $Beta(\alpha, \beta)$, where the density is $f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}$, $x \in [0, 1]$.



• If $\alpha > 1$ and $\beta > 1$, then f(x) is maximized at $x = \frac{\alpha - 1}{\alpha + \beta - 2}$ and the maximum is $M = \frac{(\alpha - 1)^{\alpha - 1}(\beta - 1)^{\beta - 1}}{(\alpha + \beta - 2)^{\alpha + \beta - 2}B(\alpha, \beta)}$.

• The acceptance rate is $\frac{1}{(b-a)M} = \frac{1}{(1-0)M} = \frac{1}{M}$.

Generate random variates from X, whose density f(x) is upper bounded by Mq(x), where q(x) is *instrumental* density.

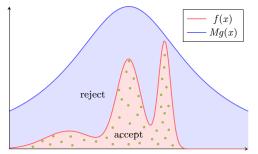


Figure: Unbounded Support (original image from ZHANG Xiaowei)

- **1** Generate random variate pairs (y_1, z_1) , (y_2, z_2) , ..., from uniform $\{(y, z) : y \in \text{support of } g(\cdot), 0 \le z \le Mg(y) \}$.
 - y_i from $Y \sim g(\cdot)$, z_i from $Z \sim \text{Unif}(0, Mg(y_i))$ (why?)
- **2** Accept the pair if $z_i < f(y_i)$ and output y_i as random variate from X with density f(x).

- Y conditioned on the event $\{Z < f(Y)\}$ has the same distribution as X, i.e., having density f(x).
 - Let Θ denote $\{(y, z) : y \in \text{support of } g(\cdot), 0 \le z \le Mg(y)\}.$
 - $(Y, Z) \sim \operatorname{uniform} \Theta$.

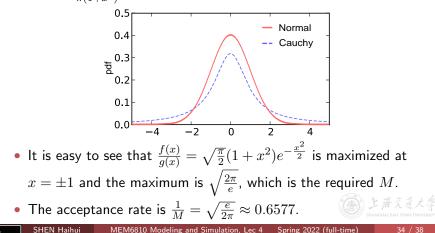
Proof.

$$\begin{split} \mathbb{P}\{Y \leq x | Z < f(Y)\} &= \frac{\mathbb{P}\{Y \leq x, Z < f(Y)\}}{\mathbb{P}\{Z < f(Y)\}} \\ &= \frac{\int_{-\infty}^{x} \int_{0}^{f(y)} f_{Y,Z}(y,z) \mathrm{d}z \mathrm{d}y}{\int_{-\infty}^{\infty} \int_{0}^{f(y)} f_{Y,Z}(y,z) \mathrm{d}z \mathrm{d}y} \quad \text{Note: } f_{Y,Z}(y,z) = \frac{1}{\Theta \text{ area}} \\ &= \frac{\int_{-\infty}^{x} \int_{0}^{f(y)} \frac{1}{\Theta \text{ area}} \mathrm{d}z \mathrm{d}y}{\int_{-\infty}^{\infty} \int_{0}^{f(y)} \mathrm{d}z \mathrm{d}y} = \frac{\int_{-\infty}^{x} \int_{0}^{f(y)} \mathrm{d}z \mathrm{d}y}{\int_{-\infty}^{\infty} \int_{0}^{f(y)} \mathrm{d}z \mathrm{d}y} \\ &= \frac{\int_{-\infty}^{x} f(y) \mathrm{d}y}{\int_{-\infty}^{\infty} f(y) \mathrm{d}y} = \frac{\mathbb{P}\{X \leq x\}}{1} = \mathbb{P}\{X \leq x\}. \end{split}$$

• The acceptance rate is $\mathbb{P}\{Z < f(Y)\} = \frac{1}{\Theta \text{ area}} = \frac{1}{\int_{-\infty}^{\infty} Mg(y) \mathrm{d}y} = \frac{1}{M \int_{-\infty}^{\infty} g(y) \mathrm{d}y} = \frac{1}{M} \cdot (A + A)$

CC BY-SA

- Goal: Generate random variates from $\mathcal{N}(0, 1)$, where the density is $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, x \in (-\infty, \infty).$
- Use Cauchy(0, 1) density as instrumental density, which is $g(x) = \frac{1}{\pi(1+x^2)}, \ x \in (-\infty, \infty).$

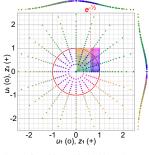


Normal from Cauchy

- Box–Muller method for $\mathcal{N}(0, 1)$ random variates:
 - **1** Generate u_1 and u_2 independently from Unif(0, 1).
 - 2 Let $z_1 = \sqrt{-2\ln u_1}\cos(2\pi u_2)$ and $z_2 = \sqrt{-2\ln u_1}\sin(2\pi u_2)$.
- z_1 and z_2 are random variates from $\mathcal{N}(0,1)$ (independent).
- Intuition:
 - For two independent $\mathcal{N}(0,1)$ RVs Z_1 and Z_2 ,

$$Z_1^2 \text{, } Z_2^2 \sim \chi_1^2 \text{, } \ Z_1^2 + Z_2^2 \sim \chi_2^2 \text{.}$$

- $X \sim \operatorname{Exp}(1/2) \iff X \sim \chi_2^2$.
- $-2\ln u_1$ is a random variate from $\operatorname{Exp}(1/2)$ (and thus χ_2^2).
- The angle is distributed uniformly around the circle.
- Rigorous proof.



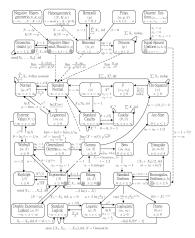


Figure: Relationships Among 35 Distributions (from Song (2005))

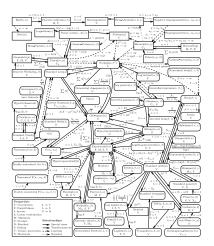


Figure: Relationships Among 76 Distributions (from [Leemis & McQueston (2008)])

• **Poisson process** with rate λ : Interarrival time distribution is exponential with rate λ (or mean $1/\lambda$), and

 $N(t+h) - N(t) \sim \text{Poisson}(\lambda h).$ (same as N(h))

- To generate Poisson process with rate λ , one only need to generate iid $Exp(\lambda)$ random variates.
 - s_i, the arrival time of the *i*th arrival, satisfies

$$s_i = s_{i-1} - (1/\lambda) \ln(u_i), \ i = 1, 2, \dots$$

Nonhomogeneous Poisson process with rate (intensity) function λ(t):

$$N(t+h) - N(t) \sim \text{Poisson}(m(t+h) - m(t)),$$
 where $m(t) = \int_0^t \lambda(s) \mathrm{d}s.$

- To generate nonhomogeneous Poisson process with rate function $\lambda(t)$, one can use the acceptance-rejection method (which is also called *thinning* in this context).
- Idea behind thinning:
 - Generate a stationary Poisson arrival process at the fastest rate $\lambda^* = \max_t \lambda(t)$.
 - But "accept" only a portion of arrivals, thinning out just enough to get the desired time-varying rate.
- Algorithm:
 - **1** Set t = 0 and i = 1.
 - 2 Generate x from Exp(λ*), and let t ← t + x (this is the arrival time of the stationary Poisson process with rate λ*).
 - **3** Generate random number u (from Unif(0, 1)). If $u \leq \lambda(t)/\lambda^*$, then $s_i = t$ and $i \leftarrow i + 1$.
 - ④ Go to Step 2.